Fastpages Notebook Blog Post
A tutorial of fastpages for Jupyter notebooks.
About
This notebook is a demonstration of some of capabilities of fastpages with notebooks.
With fastpages
you can save your jupyter notebooks into the _notebooks
folder at the root of your repository, and they will be automatically be converted to Jekyll compliant blog posts!
Front Matter
Front Matter is a markdown cell at the beginning of your notebook that allows you to inject metadata into your notebook. For example:
- Setting
toc: true
will automatically generate a table of contents - Setting
badges: true
will automatically include GitHub and Google Colab links to your notebook. - Setting
comments: true
will enable commenting on your blog post, powered by utterances.
More details and options for front matter can be viewed on the front matter section of the README.
A #hide
comment at the top of any code cell will hide both the input and output of that cell in your blog post.
A #hide_input
comment at the top of any code cell will only hide the input of that cell.
put a #collapse-hide
flag at the top of any cell if you want to hide that cell by default, but give the reader the option to show it:
#collapse-hide
import pandas as pd
import altair as alt
put a #collapse-show
flag at the top of any cell if you want to show that cell by default, but give the reader the option to hide it:
#collapse-show
cars = 'https://vega.github.io/vega-datasets/data/cars.json'
movies = 'https://vega.github.io/vega-datasets/data/movies.json'
sp500 = 'https://vega.github.io/vega-datasets/data/sp500.csv'
stocks = 'https://vega.github.io/vega-datasets/data/stocks.csv'
flights = 'https://vega.github.io/vega-datasets/data/flights-5k.json'
Interactive Charts With Altair
Charts made with Altair remain interactive. Example charts taken from this repo, specifically this notebook.
# single-value selection over [Major_Genre, MPAA_Rating] pairs
# use specific hard-wired values as the initial selected values
selection = alt.selection_single(
name='Select',
fields=['Major_Genre', 'MPAA_Rating'],
init={'Major_Genre': 'Drama', 'MPAA_Rating': 'R'},
bind={'Major_Genre': alt.binding_select(options=genres), 'MPAA_Rating': alt.binding_radio(options=mpaa)}
)
# scatter plot, modify opacity based on selection
alt.Chart(movies).mark_circle().add_selection(
selection
).encode(
x='Rotten_Tomatoes_Rating:Q',
y='IMDB_Rating:Q',
tooltip='Title:N',
opacity=alt.condition(selection, alt.value(0.75), alt.value(0.05))
)
alt.Chart(movies).mark_circle().add_selection(
alt.selection_interval(bind='scales', encodings=['x'])
).encode(
x='Rotten_Tomatoes_Rating:Q',
y=alt.Y('IMDB_Rating:Q', axis=alt.Axis(minExtent=30)), # use min extent to stabilize axis title placement
tooltip=['Title:N', 'Release_Date:N', 'IMDB_Rating:Q', 'Rotten_Tomatoes_Rating:Q']
).properties(
width=600,
height=400
)
# select a point for which to provide details-on-demand
label = alt.selection_single(
encodings=['x'], # limit selection to x-axis value
on='mouseover', # select on mouseover events
nearest=True, # select data point nearest the cursor
empty='none' # empty selection includes no data points
)
# define our base line chart of stock prices
base = alt.Chart().mark_line().encode(
alt.X('date:T'),
alt.Y('price:Q', scale=alt.Scale(type='log')),
alt.Color('symbol:N')
)
alt.layer(
base, # base line chart
# add a rule mark to serve as a guide line
alt.Chart().mark_rule(color='#aaa').encode(
x='date:T'
).transform_filter(label),
# add circle marks for selected time points, hide unselected points
base.mark_circle().encode(
opacity=alt.condition(label, alt.value(1), alt.value(0))
).add_selection(label),
# add white stroked text to provide a legible background for labels
base.mark_text(align='left', dx=5, dy=-5, stroke='white', strokeWidth=2).encode(
text='price:Q'
).transform_filter(label),
# add text labels for stock prices
base.mark_text(align='left', dx=5, dy=-5).encode(
text='price:Q'
).transform_filter(label),
data=stocks
).properties(
width=700,
height=400
)
movies = 'https://vega.github.io/vega-datasets/data/movies.json'
df = pd.read_json(movies)
# display table with pandas
df[['Title', 'Worldwide_Gross',
'Production_Budget', 'Distributor', 'MPAA_Rating', 'IMDB_Rating', 'Rotten_Tomatoes_Rating']].head()
Tweetcards
Typing > twitter: https://twitter.com/jakevdp/status/1204765621767901185?s=20
will render this:
Altair 4.0 is released! https://t.co/PCyrIOTcvv
— Jake VanderPlas (@jakevdp) December 11, 2019
Try it with:
pip install -U altair
The full list of changes is at https://t.co/roXmzcsT58 ...read on for some highlights. pic.twitter.com/vWJ0ZveKbZ
Boxes / Callouts
Typing > Warning: There will be no second warning!
will render this:
Typing > Important: Pay attention! It's important.
will render this:
Typing > Tip: This is my tip.
will render this:
Typing > Note: Take note of this.
will render this:
Typing > Note: A doc link to [an example website: fast.ai](https://www.fast.ai/) should also work fine.
will render in the docs: